
Announcements Recap Monadic IO A handful monads more FIN

Software System Design and Implementation

Lecture 7: Monads, IO

Zoltan A. Kocsis
University of New South Wales

Term 2 2022

1



Announcements Recap Monadic IO A handful monads more FIN

Announcements

As of yesterday, Assignment 2 is out!
Due 02 Aug 2022

It involves monads. Lots of ’em.

A full solution will require you to write approximately 200
lines of Haskell code, and you’ll have to do quite a bit of
independent thinking. Start early!

2



Announcements Recap Monadic IO A handful monads more FIN

Two Weeks of Monads

So far we’ve met Maybe, State, and List.

They allowed us to get rid of certain kinds of repetitive code:

Maybe: constantly case-checking for Nothing
State: manually threading through state via let (s,x) =

...

They allowed us to more easily write common code:

List: Exploring all possible choices
List: Building solutions by backtracking
List: List comprehensions

NB: Haskell allowed us to abstract away repetitive code.

3



Announcements Recap Monadic IO A handful monads more FIN

Two Weeks of Monads

So far we’ve met Maybe, State, and List.

They allowed us to get rid of certain kinds of repetitive code:

Maybe: constantly case-checking for Nothing

State: manually threading through state via let (s,x) =

...

They allowed us to more easily write common code:

List: Exploring all possible choices
List: Building solutions by backtracking
List: List comprehensions

NB: Haskell allowed us to abstract away repetitive code.

4



Announcements Recap Monadic IO A handful monads more FIN

Two Weeks of Monads

So far we’ve met Maybe, State, and List.

They allowed us to get rid of certain kinds of repetitive code:

Maybe: constantly case-checking for Nothing
State: manually threading through state via let (s,x) =

...

They allowed us to more easily write common code:

List: Exploring all possible choices
List: Building solutions by backtracking
List: List comprehensions

NB: Haskell allowed us to abstract away repetitive code.

5



Announcements Recap Monadic IO A handful monads more FIN

Two Weeks of Monads

So far we’ve met Maybe, State, and List.

They allowed us to get rid of certain kinds of repetitive code:

Maybe: constantly case-checking for Nothing
State: manually threading through state via let (s,x) =

...

They allowed us to more easily write common code:

List: Exploring all possible choices

List: Building solutions by backtracking
List: List comprehensions

NB: Haskell allowed us to abstract away repetitive code.

6



Announcements Recap Monadic IO A handful monads more FIN

Two Weeks of Monads

So far we’ve met Maybe, State, and List.

They allowed us to get rid of certain kinds of repetitive code:

Maybe: constantly case-checking for Nothing
State: manually threading through state via let (s,x) =

...

They allowed us to more easily write common code:

List: Exploring all possible choices
List: Building solutions by backtracking

List: List comprehensions

NB: Haskell allowed us to abstract away repetitive code.

7



Announcements Recap Monadic IO A handful monads more FIN

Two Weeks of Monads

So far we’ve met Maybe, State, and List.

They allowed us to get rid of certain kinds of repetitive code:

Maybe: constantly case-checking for Nothing
State: manually threading through state via let (s,x) =

...

They allowed us to more easily write common code:

List: Exploring all possible choices
List: Building solutions by backtracking
List: List comprehensions

NB: Haskell allowed us to abstract away repetitive code.

8



Announcements Recap Monadic IO A handful monads more FIN

The Monad Type Class

All of these (seemingly different) things are instances of the same
abstract concept: a monad.

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

The Haskell community used monads to solve many system design
problems in functional programming. There are many applications
we haven’t seen: e.g. writing parsers using monads is a breeze.
Async via futures and promises is another example.

While monads are abstract, once you grok them they make many
systen design tasks easy.

9



Announcements Recap Monadic IO A handful monads more FIN

The Monad Type Class

All of these (seemingly different) things are instances of the same
abstract concept: a monad.

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

The Haskell community used monads to solve many system design
problems in functional programming. There are many applications
we haven’t seen: e.g. writing parsers using monads is a breeze.
Async via futures and promises is another example.
While monads are abstract, once you grok them they make many
systen design tasks easy.

10



Announcements Recap Monadic IO A handful monads more FIN

The original purpose

Monadic I/O

In Oct 1992, Simon Peyton Jones and Philip Wadler presented a
new model, based on monads, for performing input and output
in pure functional languages such as Haskell.

We still haven’t done any I/O!
Now that we know a few examples of monads, we’ll be able to
understand how to use monads to do input/output, and what
problems this solves.

11



Announcements Recap Monadic IO A handful monads more FIN

The original purpose

Monadic I/O

In Oct 1992, Simon Peyton Jones and Philip Wadler presented a
new model, based on monads, for performing input and output
in pure functional languages such as Haskell.

We still haven’t done any I/O!
Now that we know a few examples of monads, we’ll be able to
understand how to use monads to do input/output, and what
problems this solves.

12



Announcements Recap Monadic IO A handful monads more FIN

Monads

Recall how two weeks ago we defined our own State type and
monad using

type State s a = s -> (s,a)

State Operations

get :: State s s

put :: s -> State s ()

return :: a -> State s a

(>>=) :: State s a -> (a -> State s b) -> State s b

evalState :: State s a -> s -> a

We need to perform I/O, to communicate with the user and with
the hardware. A State-like monad will allow us to do this.

13



Announcements Recap Monadic IO A handful monads more FIN

Monads

Recall how two weeks ago we defined our own State type and
monad using

type State s a = s -> (s,a)

State Operations

get :: State s s

put :: s -> State s ()

return :: a -> State s a

(>>=) :: State s a -> (a -> State s b) -> State s b

evalState :: State s a -> s -> a

We need to perform I/O, to communicate with the user and with
the hardware. A State-like monad will allow us to do this.

14



Announcements Recap Monadic IO A handful monads more FIN

The IO Type
A procedure that performs some side effects, returning a result of
type a is written as IO a.

World interpretation

IO a will be an abstract type. But what if we thought of it as a
function:

RealWorld -> (RealWorld, a)

We can! This was Jones’ and Wadler’s original idea. And if we do,
we get a monad. (that’s close to how it’s implemented in GHC)

(>>=) :: IO a -> (a -> IO b) -> IO b

return :: a -> IO a

getChar :: IO Char

readLine :: IO String

putStrLn :: String -> IO ()

15



Announcements Recap Monadic IO A handful monads more FIN

The IO Type
A procedure that performs some side effects, returning a result of
type a is written as IO a.

World interpretation

IO a will be an abstract type. But what if we thought of it as a
function:

RealWorld -> (RealWorld, a)

We can! This was Jones’ and Wadler’s original idea. And if we do,
we get a monad. (that’s close to how it’s implemented in GHC)

(>>=) :: IO a -> (a -> IO b) -> IO b

return :: a -> IO a

getChar :: IO Char

readLine :: IO String

putStrLn :: String -> IO ()

16



Announcements Recap Monadic IO A handful monads more FIN

The IO Type
A procedure that performs some side effects, returning a result of
type a is written as IO a.

World interpretation

IO a will be an abstract type. But what if we thought of it as a
function:

RealWorld -> (RealWorld, a)

We can! This was Jones’ and Wadler’s original idea. And if we do,
we get a monad. (that’s close to how it’s implemented in GHC)

(>>=) :: IO a -> (a -> IO b) -> IO b

return :: a -> IO a

getChar :: IO Char

readLine :: IO String

putStrLn :: String -> IO ()

17



Announcements Recap Monadic IO A handful monads more FIN

Infectious IO
But what about the RealWorld type? That type is purely abstract.
You can’t get We can convert values to procedures with return:

return :: a -> IO a

This is just the procedure that returns the value, and does nothing
else.

But we can’t convert procedures to pure values:

???? :: IO a -> a

The only function that gets an a from an IO a is >>=:

(>>=) :: IO a -> (a -> IO b) -> IO b

But it returns an IO procedure as well.

Conclusion

The moment you use an IO procedure in a function, IO shows up
in the types, and you can’t get rid of it!

If a function makes use of IO effects directly or indirectly, it will
have IO in its type!

18



Announcements Recap Monadic IO A handful monads more FIN

Infectious IO
But what about the RealWorld type? That type is purely abstract.
You can’t get We can convert values to procedures with return:

return :: a -> IO a

This is just the procedure that returns the value, and does nothing
else. But we can’t convert procedures to pure values:

???? :: IO a -> a

The only function that gets an a from an IO a is >>=:

(>>=) :: IO a -> (a -> IO b) -> IO b

But it returns an IO procedure as well.

Conclusion

The moment you use an IO procedure in a function, IO shows up
in the types, and you can’t get rid of it!

If a function makes use of IO effects directly or indirectly, it will
have IO in its type!

19



Announcements Recap Monadic IO A handful monads more FIN

Infectious IO
But what about the RealWorld type? That type is purely abstract.
You can’t get We can convert values to procedures with return:

return :: a -> IO a

This is just the procedure that returns the value, and does nothing
else. But we can’t convert procedures to pure values:

???? :: IO a -> a

The only function that gets an a from an IO a is >>=:

(>>=) :: IO a -> (a -> IO b) -> IO b

But it returns an IO procedure as well.

Conclusion

The moment you use an IO procedure in a function, IO shows up
in the types, and you can’t get rid of it!

If a function makes use of IO effects directly or indirectly, it will
have IO in its type!

20



Announcements Recap Monadic IO A handful monads more FIN

Infectious IO
But what about the RealWorld type? That type is purely abstract.
You can’t get We can convert values to procedures with return:

return :: a -> IO a

This is just the procedure that returns the value, and does nothing
else. But we can’t convert procedures to pure values:

???? :: IO a -> a

The only function that gets an a from an IO a is >>=:

(>>=) :: IO a -> (a -> IO b) -> IO b

But it returns an IO procedure as well.

Conclusion

The moment you use an IO procedure in a function, IO shows up
in the types, and you can’t get rid of it!

If a function makes use of IO effects directly or indirectly, it will
have IO in its type!

21



Announcements Recap Monadic IO A handful monads more FIN

Equational Reasoning

Demo: Hello World

Demo: Referential Transparency,
Equational Reasoning

22



Announcements Recap Monadic IO A handful monads more FIN

Equational Reasoning

Demo: Hello World Demo: Referential Transparency,
Equational Reasoning

23



Announcements Recap Monadic IO A handful monads more FIN

Equational Reasoning

Demo: Hello World Demo: Referential Transparency,
Equational Reasoning

24



Announcements Recap Monadic IO A handful monads more FIN

Haskell Design Strategy

We ultimately “run” IO procedures by calling them from main:

main :: IO ()

Pure Logic

IO Shell

Encapsulated
Internal State

25



Announcements Recap Monadic IO A handful monads more FIN

Haskell Design Strategy

We ultimately “run” IO procedures by calling them from main:

main :: IO ()

Pure Logic

IO Shell

Encapsulated
Internal State

26



Announcements Recap Monadic IO A handful monads more FIN

Examples

Example (Triangles)

Given an input number n, print a triangle of * characters of base
width n.

Example (Maze Game)

Design a game that reads in a n × n maze from a file. The player
starts at position (0, 0) and must reach position (n − 1, n − 1) to
win. The game accepts keyboard input to move the player around
the maze.

27



Announcements Recap Monadic IO A handful monads more FIN

Examples

Example (Triangles)

Given an input number n, print a triangle of * characters of base
width n.

Example (Maze Game)

Design a game that reads in a n × n maze from a file. The player
starts at position (0, 0) and must reach position (n − 1, n − 1) to
win. The game accepts keyboard input to move the player around
the maze.

28



Announcements Recap Monadic IO A handful monads more FIN

Benefits of an IO Type

Absence of undeclared effects (i.e. side effects) makes type
system more informative:

A type signatures captures entire interface of the function.
All dependencies are explicit in the form of data dependencies.
All dependencies are typed.

Equational reasoning works, and code is easier to test:

Testing is local, doesn’t require complex set-up and tear-down.
Reasoning is local, doesn’t require state invariants.
Type checking leads to strong guarantees.

29



Announcements Recap Monadic IO A handful monads more FIN

Benefits of an IO Type

Absence of undeclared effects (i.e. side effects) makes type
system more informative:

A type signatures captures entire interface of the function.
All dependencies are explicit in the form of data dependencies.
All dependencies are typed.

Equational reasoning works, and code is easier to test:

Testing is local, doesn’t require complex set-up and tear-down.
Reasoning is local, doesn’t require state invariants.
Type checking leads to strong guarantees.

30



Announcements Recap Monadic IO A handful monads more FIN

The Either Monad

data Either a b = Left a | Right b

The Either type represents values with two possibilities: a value
of type Either a b is either Left a or Right b.

This type is sometimes used to represent a value which is either
correct or an error; by convention, the Left constructor is used to
hold an error value and the Right constructor is used to hold a
correct value (mnemonic: ”right” also means ”correct”). Demo

31



Announcements Recap Monadic IO A handful monads more FIN

FIN

1 Thanks!

2 The quiz is due 23:59 Thursday, 21 July 2022.

3 The exercise is due 09:10 Thursday, 21 June 2022.

4 Check out the assignment.

32


	Announcements
	

	Recap
	

	Monadic IO
	

	A handful monads more
	

	FIN
	


